MCP Integration Guide
This guide provides step-by-step instructions for integrating UAICP with Anthropic's Model Context Protocol (MCP). MCP provides rich semantic context and tool management capabilities that UAICP extends through universal discovery and cross-protocol translation.
Integration Overview
MCP + UAICP Architecture
graph TB
A[MCP Client] --> B[UAICP Gateway]
B --> C[Protocol Translation Hub]
B --> D[Universal Discovery Mesh]
B --> E[OpenAI Services]
B --> F[Custom AI Services]
B --> G[Other MCP Services]
Key Benefits
- 🔍 Enhanced Discovery: Extend MCP's tool discovery across all protocols
- 🌉 Protocol Bridge: Enable MCP tools to work with non-MCP AI services
- 🎯 Capability Matching: Match MCP's rich capabilities with other protocols
- 📝 Context Preservation: Maintain MCP's context semantics across boundaries
Quick Start
Installation
# Install MCP SDK
npm install @anthropic-ai/mcp-sdk
# Install UAICP Client Library
npm install @uaicp/client-sdk
# Install MCP-UAICP Bridge
npm install @uaicp/mcp-bridge
Basic Setup
import { MCPServer } from '@anthropic-ai/mcp-sdk/server';
import { UAICPBridge } from '@uaicp/mcp-bridge';
// Create enhanced MCP server with UAICP capabilities
const server = new MCPServer({
name: "enhanced-mcp-server",
version: "1.0.0"
});
// Initialize UAICP bridge
const bridge = new UAICPBridge({
discoveryEndpoint: "https://discovery.uaicp.org",
enableCrossProtocol: true
});
// Connect MCP server to UAICP ecosystem
await bridge.connectMCPServer(server);
// Now your MCP server can discover and use services from any protocol!
Service Registration
Register MCP Service with UAICP
import { ServiceDescription } from '@uaicp/client-sdk';
const serviceDescription: ServiceDescription = {
"@context": "https://uaicp.org/schema/v1.0",
"serviceId": "financial-analysis-mcp",
"provider": {
"name": "Your Company",
"type": "enterprise"
},
"protocolType": "mcp",
"protocolVersion": "1.0",
"capabilities": {
"modalities": ["text"],
"maxContextLength": 200000,
"streamingSupport": true,
"specificFeatures": [
"tool_calling",
"context_management",
"financial_analysis"
],
"domainSpecialization": ["finance", "accounting"]
},
"endpoint": "http://localhost:3000/mcp"
};
await bridge.registerService(serviceDescription);
Cross-Protocol Tool Discovery
Enhanced Tool Discovery
class EnhancedMCPServer {
private bridge: UAICPBridge;
async listTools(): Promise<Tool[]> {
// Get native MCP tools
const nativeTools = await this.getNativeMCPTools();
// Discover tools from other protocols via UAICP
const crossProtocolTools = await this.bridge.discoverTools({
capabilities: ['text-analysis', 'data-processing'],
protocols: ['openai', 'anthropic', 'custom'],
excludeProtocols: ['mcp'] // Avoid duplicates
});
// Merge all available tools
return [...nativeTools, ...crossProtocolTools];
}
async executeTool(name: string, arguments: any): Promise<any> {
if (this.isNativeMCPTool(name)) {
return await this.executeNativeTool(name, arguments);
} else {
// Execute cross-protocol tool via UAICP
return await this.bridge.executeCrossProtocolTool(name, arguments);
}
}
}
Context-Aware Discovery
// Discover services based on conversation context
const services = await bridge.discoverServicesForContext({
context: mcpContext,
requirements: {
domain: 'finance',
complexity: 'high',
dataTypes: ['financial_statements', 'market_data']
}
});
console.log(`Found ${services.length} context-appropriate services`);
Protocol Translation
Automatic MCP ↔ OpenAI Translation
// MCP tool call → OpenAI function call
const mcpToolCall = {
type: 'tool_call',
tool: {
name: 'analyze_financial_statement',
arguments: { statement: 'balance_sheet.json' }
}
};
// Automatically translated to OpenAI format when routing to OpenAI service
const openAICall = await bridge.translateCall(mcpToolCall, 'openai');
// Result: { role: 'assistant', tool_calls: [{ function: { name: '...', arguments: '...' }}]}
Context Preservation
// MCP context is preserved when routing to other protocols
const result = await bridge.executeWithContext({
toolCall: mcpToolCall,
context: mcpContext,
targetProtocol: 'openai'
});
// Context metadata is automatically injected into the target protocol format
Real-World Examples
Financial Analysis Service
// MCP server with UAICP-enhanced capabilities
const financialMCP = new MCPServer({
name: "financial-analyzer",
version: "1.0.0"
});
// Register financial analysis tools
financialMCP.setRequestHandler(ListToolsRequestSchema, async () => ({
tools: [
{
name: "analyze_statement",
description: "Analyze financial statements",
inputSchema: {
type: "object",
properties: {
statement: { type: "string" },
analysis_type: { type: "string", enum: ["ratio", "trend", "peer"] }
}
}
}
]
}));
// Handle tool execution with UAICP fallbacks
financialMCP.setRequestHandler(CallToolRequestSchema, async (request) => {
try {
// Try primary analysis
return await this.primaryAnalysis(request.params);
} catch (error) {
// Fallback to UAICP services
return await bridge.executeFallback(request.params, {
serviceTypes: ['financial_analysis', 'data_analysis'],
minReliability: 0.8
});
}
});
Multi-Modal Data Processing
// MCP server that can process various data types via UAICP
class MultiModalMCP {
async processData(dataType: string, data: any) {
// Find best service for this data type
const services = await bridge.findServices({
capabilities: [`${dataType}_processing`],
performance: { maxLatency: 5000 },
cost: { maxPerRequest: 0.10 }
});
if (services.length === 0) {
throw new Error(`No services available for ${dataType} processing`);
}
// Use the best available service
return await bridge.executeService(services[0], {
action: 'process',
dataType,
data
});
}
}
Error Handling & Fallbacks
Robust Fallback Strategy
class RobustMCPIntegration {
async executeWithFallback(toolCall: ToolCall): Promise<ToolResult> {
const fallbackChain = [
() => this.executePrimaryMCP(toolCall),
() => this.executeCrossProtocol(toolCall, 'openai'),
() => this.executeCrossProtocol(toolCall, 'anthropic'),
() => this.executeLocalFallback(toolCall)
];
for (const fallback of fallbackChain) {
try {
const result = await fallback();
return result;
} catch (error) {
console.warn(`Fallback failed:`, error.message);
continue;
}
}
throw new Error('All execution methods failed');
}
}
Testing Your Integration
Integration Tests
import { describe, test, expect } from '@jest/globals';
describe('MCP-UAICP Integration', () => {
test('should discover cross-protocol services', async () => {
const bridge = new UAICPBridge({ testMode: true });
const services = await bridge.discoverServices({
capabilities: ['text-analysis'],
protocols: ['openai', 'anthropic']
});
expect(services.length).toBeGreaterThan(0);
expect(services[0].protocolType).not.toBe('mcp');
});
test('should translate MCP calls to OpenAI format', async () => {
const mcpCall = {
type: 'tool_call',
tool: { name: 'test_tool', arguments: { input: 'test' } }
};
const translated = await bridge.translateCall(mcpCall, 'openai');
expect(translated.tool_calls).toBeDefined();
expect(translated.tool_calls[0].function.name).toBe('test_tool');
});
});
Performance Optimization
Best Practices
- Connection Pooling: Reuse connections to UAICP services
- Caching: Cache service discovery and translation results
- Batching: Group multiple tool calls when possible
- Circuit Breakers: Prevent cascading failures
// Example: Connection pooling
const bridge = new UAICPBridge({
connectionPool: {
maxConnections: 10,
keepAlive: true,
timeout: 30000
}
});
// Example: Caching
const cachedBridge = new UAICPBridge({
cache: {
discoveryTTL: 300, // 5 minutes
translationTTL: 3600 // 1 hour
}
});
Monitoring & Observability
Track Integration Performance
import { UAICPMonitor } from '@uaicp/monitoring';
const monitor = new UAICPMonitor();
// Track cross-protocol calls
monitor.onCrossProtocolCall((event) => {
console.log(`${event.sourceProtocol} → ${event.targetProtocol}: ${event.duration}ms`);
});
// Track service discovery
monitor.onServiceDiscovery((event) => {
console.log(`Discovered ${event.serviceCount} services in ${event.duration}ms`);
});
// Generate performance reports
const report = await monitor.generateReport();
console.log('Integration Performance:', report);
Troubleshooting
Common Issues
Service Discovery Problems
# Check UAICP connectivity
curl https://discovery.uaicp.org/health
# Verify service registration
curl https://discovery.uaicp.org/services/your-service-id
Translation Failures
// Enable debug logging
const bridge = new UAICPBridge({
debug: true,
logLevel: 'verbose'
});
// Test translation compatibility
const compatibility = await bridge.checkTranslationCompatibility('mcp', 'openai');
console.log('Compatibility:', compatibility);
Context Loss Issues
// Verify context preservation
const contextTest = await bridge.testContextPreservation({
sourceContext: mcpContext,
targetProtocol: 'openai'
});
if (!contextTest.preserved) {
console.error('Context preservation failed:', contextTest.issues);
}
Next Steps
- Integration Overview - Connect with other AI platforms
- Core Specification - Deep dive into UAICP architecture
- Examples Repository - Complete code examples
- Community Support - Get help from other developers
Resources
This integration enables your MCP services to seamlessly communicate with the entire AI ecosystem. Happy building! 🚀