Skip to main content
Version: v1.0.0 (Draft)

Integration Overview

UAICP is designed to integrate seamlessly with existing AI protocol ecosystems. This guide provides an overview of how to integrate UAICP with various platforms and protocols.

Integration Philosophy

UAICP follows a non-invasive integration approach:

  • Enhance, don't replace existing protocols
  • Preserve existing functionality while adding interoperability
  • Minimal code changes to existing systems
  • Progressive adoption - start simple, add features over time

Supported Protocols

Primary Protocol Integrations

ProtocolStatusIntegration TypeComplexity
MCP (Anthropic)✅ ActiveBridge & ExtensionMedium
OpenAI API✅ ActiveTranslation LayerLow
Google A2A🔄 In ProgressBridge & DiscoveryMedium
Hugging Face📋 PlannedAPI WrapperLow
Ollama📋 PlannedLocal IntegrationMedium

Platform Integrations

PlatformStatusIntegration GuideNotes
LangChain✅ AvailableCustom ProviderEasy integration
LlamaIndex🔄 In ProgressService ContextModular approach
AutoGen📋 PlannedAgent FrameworkMulti-agent focus
CrewAI📋 PlannedTool IntegrationWorkflow-based

Integration Patterns

1. Translation Layer Pattern

Best for: REST APIs, OpenAI-compatible services

// Your existing code stays the same
const openai = new OpenAI({ apiKey: 'your-key' });

// UAICP adds universal routing and discovery
const uaicp = new UAICP({
fallbackProviders: ['anthropic', 'local-llm'],
translationLayer: true
});

// Requests automatically route to best available service
const response = await uaicp.chat.completions.create({
model: 'gpt-4', // Will route to available equivalent
messages: [{ role: 'user', content: 'Hello' }]
});

2. Bridge Pattern

Best for: Complex protocols like MCP, A2A

// UAICP bridges between different protocol ecosystems
const mcpServer = new MCPServer();
const uaicpBridge = new UAICPBridge();

// MCP tools become available to OpenAI clients
uaicpBridge.bridgeProtocols(mcpServer, 'openai-compatible');

// Now OpenAI clients can use MCP tools seamlessly
const result = await openaiClient.chat.completions.create({
model: 'gpt-4',
messages: [...],
tools: mcpTools // Automatically translated
});

3. Discovery Enhancement Pattern

Best for: Multi-service environments

// UAICP enhances existing discovery mechanisms
const services = await uaicp.discovery.findServices({
capabilities: ['text-generation', 'function-calling'],
protocols: ['openai', 'mcp', 'anthropic'],
performance: { latency: '<100ms' },
cost: { maxPerToken: 0.001 }
});

// Use the best service for your needs
const bestService = services[0];
const response = await uaicp.send(request, { serviceId: bestService.id });

Quick Integration Guide

Step 1: Choose Your Integration Type

For REST API Services (OpenAI, Anthropic, etc.)

npm install @uaicp/client
import { UAICP } from '@uaicp/client';

const client = new UAICP({
providers: ['openai', 'anthropic', 'local'],
fallbackEnabled: true
});

For Protocol Services (MCP, A2A)

npm install @uaicp/bridge
import { UAICPBridge } from '@uaicp/bridge';

const bridge = new UAICPBridge();
await bridge.connect('mcp://localhost:3000', 'openai-compatible');

For Framework Integration (LangChain, LlamaIndex)

npm install @uaicp/langchain
# or
npm install @uaicp/llamaindex

Step 2: Configure Discovery

// Configure how UAICP discovers services
const config = {
discovery: {
mechanisms: ['dns', 'registry', 'local'],
preferences: {
protocols: ['mcp', 'openai', 'anthropic'],
regions: ['us-east', 'local'],
performance: 'balanced' // or 'speed', 'cost', 'quality'
}
}
};

Step 3: Add Routing Logic

// Define how requests should be routed
const routing = {
rules: [
{
condition: { messageType: 'function-call' },
prefer: ['mcp', 'openai'],
fallback: true
},
{
condition: { tokensEstimate: '>10000' },
prefer: ['local-llm', 'cost-effective'],
qualityThreshold: 0.8
}
]
};

Migration Strategies

Strategy 1: Gradual Replacement

Best for: Existing production systems

  1. Phase 1: Add UAICP as fallback
  2. Phase 2: Route specific requests through UAICP
  3. Phase 3: Make UAICP primary with existing as fallback
  4. Phase 4: Full UAICP integration

Strategy 2: New Feature Integration

Best for: Adding new capabilities

  1. Use UAICP for new features requiring multi-provider support
  2. Keep existing features on current implementation
  3. Gradually migrate features to UAICP as needed

Strategy 3: Development Environment First

Best for: Risk-averse organizations

  1. Implement UAICP in development/staging
  2. Test interoperability scenarios
  3. Measure performance and reliability
  4. Roll out to production gradually

Implementation Checklist

Basic Integration ✅

  • Choose integration pattern (Translation/Bridge/Discovery)
  • Install appropriate UAICP packages
  • Configure basic service discovery
  • Test with primary use cases
  • Set up fallback mechanisms

Advanced Integration 🔧

  • Configure custom routing rules
  • Set up monitoring and observability
  • Implement security policies
  • Add performance optimization
  • Set up automated testing

Production Ready 🚀

  • Load testing with multiple providers
  • Error handling and recovery testing
  • Security audit and compliance check
  • Documentation and team training
  • Monitoring and alerting setup

Common Integration Challenges

Challenge 1: Protocol Differences

Solution: Use UAICP's translation layer to handle format differences automatically.

Challenge 2: Authentication Variations

Solution: Configure UAICP's unified auth system to handle multiple authentication methods.

Challenge 3: Capability Mismatches

Solution: Use UAICP's capability negotiation to find compatible alternatives.

Challenge 4: Performance Concerns

Solution: Implement UAICP's adaptive routing to optimize for your performance requirements.

Support and Resources

Documentation

Community

Professional Support

  • Architecture consulting for complex integrations
  • Custom protocol adapter development
  • Enterprise deployment assistance

Ready to start integrating? Choose your platform from the guides below! 👇